J Plant Growth Regul (1987) 5 :217-223

GC-MS Identification of GA_{20} -13-O-Glucoside Formed from GA_{20} In Normal Plants and Dwarf-1 Mutants of Zea mays L.

 G_c Schneider,¹ J. Schmidt,¹ and B. O. Phinney²

^IInstitute of Plant Biochemistry, Halle (Saale), Academy of Sciences of the German Democratic Republic, German Democratic Republic

²Department of Biology, University of California, Los Angeles, California

Received August 7, 1986; accepted October 23, 1986

Abstract. After feeding GA_{20} to excised seedlings of Zea mays L. normals (N) and dwarf-1 mutants ($d\tilde{d}l$), GA_{20} -13-O-glucoside (9) was identified by HPLC and by GC-MS of its permethylated derivative. The glucosylation rate of GA_{20} was found to be higher in the dwarf-1 mutant (26%) than in the normal plant (3.6%). This article includes a GC-MS study in which diagnostic fragments from the spectra of permethylated synthetic GA glucosides have been selected that proved to be useful for the identification of permethylated GA glucosides .

In Zea mays, GA_{20} is the immediate precursor of the active gibberellin, GA_1 (Phinney 1984). Thus the metabolism of GA_{20} is expected to be precisely con-^{trolled} in the plant. Apart from conversion into GA_1 , two possibilities exist for the metabolism of GA_{20} (see Fig. 1): (1) 2 β -hydroxylation, which results in $G_{A_{29}}$, and (2) conjugation, leading to, e.g., glucosyl derivatives.

In the dwarf-1 mutant (d1) of Zea mays, where the conversion of GA_{20} into GA_1 is blocked (Phinney 1984), GA_{29} and the GA_{20} conjugates are expected to be primary metabolites (Fig. 1). The 2 β -hydroxylation step in the pathway has been proved to occur (Heupel et al. 1985). However, \overrightarrow{GA}_{20} conjugates, e.g., GA_{20} glucosyl conjugates, have not yet been identified unequivocally in Zea $mays$, although some investigations on presumptive GA_{20} conjugates have been reported (Rood et al. 1983a,b).

The aim of our experiments is to gain evidence for the metabolic transformation of GA_{20} into GA_{20} -13-O-glucoside (9) in both the normal plant and the d warf-1 mutant of Zea mays L.

Fig. 1. Presumptive metabolic pathway

Materials and Methods

Plant Material and Incubation Conditions

Caryopses of Zea mays L. normal (N) and Zea mays L. dwarf-1 mutant $(d¹)$ were germinated and grown for 7 days at 25°C. Excised shoots of each were incubated with 5.6 mg GA_{20} (Beale et al. 1980) dissolved in 2 ml of an ethanolwater (15:85) mixture for $\frac{48}{3}$ h at room temperature.

Extraction and Purification

The incubated shoots of Zea mays N (fresh weight; 16 g) and d1 (fresh weight; 10.5 g) were macerated in 150 and 100 ml, respectively, 80% MeOH. After $4 h$ at 4°C the extracts were filtered and the residue reextracted with 100 ml MeO^H for 12 h. The pooled first and second extracts were treated with 1 g PVP overnight and each spiked with 4.17×10^4 Bq (0.5 µg) of [³H]GA₂₀-13-O-glucoside (9). After the evaporation of the MeOH, the aqueous residue was purified by extraction with *n*-hexane and subsequently taken to dryness (N, 640 mg; d¹, 360 mg). The extracts were adsorbed onto Celite, subjected to a 25 ml $DEAE$. Sephadex A-25 column (Gräbner et al. 1976) and eluted with 25 ml portions of MeOH, 0.25 N HOAc/MeOH, 0.5 N HOAc/MeOH, 0.75 N HOAc/MeOH, 1^N HOAc/MeOH, 2 N HOAc/MeOH, 4 N HOAc/MeOH, and 8 N HOAc/MeOH-Fractions 6–8 (2 N HOAc to 8 N HOAc), which contained the marker activity. were pooled (N, 52 mg; d1, 28 mg) and rechromatographed on 18g silic^a

	Formula no.	SP-2100		QF-1	
Permethylated samples		l _R	N	t _R	N
$GA, -3-O-glucoside$	$\left(I\right)$	48.6	2690	14.2	1650
$GA_1 - 13 - O$ -glucoside	(2)	41.1	2710	11.9	1870
GA_{4} -3-O-glucoside	(5)	35.1	3420	9.7	1440
GA_s -13- O -glucoside	(6)	31.5	2760	10.3	2100
GA_{8} -2-O-glucoside	(7)	61.8	2350	16.9	1540
$GA_{g-13-O}\text{-}glucoside$	(8)	53.7	2620	13.5	1560
GA_{20} -13-O-glucoside	(9)	31.5	3140	9.9	1960

Table 1. Retention times $[t_p (min)]$ and number of theoretical plates/m (N) of permethylated GA glucosides on SP-2100 and QF-1.

For experimental details see Materials and Methods.

(Woelm, 100-200 mesh) with chloroform :MeOH:HOAc in the following ratios $50:0:0, 45:5:0, 40:10:0, 40:10:0.5, 40:10:1, \text{ and } 40:10:2 \text{ (v:v.v, 10 ml fractions)}$. The radioactivity was recovered from fractions $17-21$ (N, 8 mg; d1, 8 mg). The Samples were then purified by preparative HPLC (for experimental details see Schneider et al. 1984) on an RP 18 column (4.6 \times 250 mm) eluted with MeOH:0.2% HOAc (40:60) (1 ml/min). The GA₂₀-glucoside fraction (t_R = $12 - 14$ min) was collected and taken to dryness.

FIPLC Quantitation

Analyses were carried out with a Milichrom OB 4 (Academy of Sciences of the USSR, Novosibirsk) (Baram et al. 1983) fitted with a Silica RP 18 (5 μ m) column (2 \times 62 mm), detector set on 206 nm, eluent: MeOH:0.1%H₃PO₄ (50:50, 100 μ l/min). Synthetic GA₂₀-13-O-glucoside (9) (Schneider et al. 1984) Was used as a standard for calibration ($t_R = 5.1$ min).

The content of the HPLC purified \widehat{GA}_{20} -glucoside fractions from the feeding Was calculated on the basis of the peak area and the recovered radioactivity (Table 3). For conditions for radiocounting see Lattke and Schneider (1985).

Gas Chromatography and GC-MS

Gibberellin glucoside samples (Schneider 1981) were permethylated according to Rivier et al. (1981). The ethyl acetate extracts were subjected to preparative TLC (Silica 60 Merck) with toluene: ethyl acetate: $HOAC$ [60:40:5 (v:v:v)]. Zones between R_F 0.60 and 0.70 were scraped off and eluted with ethyl acetate . The dried extracts were dissolved in MeOH and subjected to GC or GC-MS .

GC analyses were performed on an HP 5700 equipped with a glass column (180 cm \times 2 mm i.d.) containing 3% SP-2100 on Supelcoport (100–120 mesh) or 3% QF-1 on GasChrom (80-100 mesh), carrier gas nitrogen, flow rate 50 ml/min, 250° isothermal, FID detection . The GC-MS measurements were car-

^a Base peak: m/z 101 (100%).
b Base peak: m/z 88 (100%).

G. Schneider et al.

 $G_{A_{20}}$ Glucoside Formation in Zea mays

ried out on a Varian Mat 111 fitted with a glass column (180 cm \times 2 mm) containing 3% OF-1 on GasChrom Q (125-160 mesh), carrier gas helium 15 ml/min, 250° isothermal, MS electron energy 80 eV.

Results and Discussions

GC-MS of Permethylated GA-O-Glucosides

As the basis for the identification of $GA-O$ -glucosides by GC -MS we reinvestigated the permethylation of gibberellins and their conjugates originally de-^{Scribed} by Rivier et al. (1981). Permethylated derivatives are especially prom-¹⁸ ing for compounds with a relatively high molecular weight, like gibberellin

	Recovered			Total	Metabolic
	Amount (μg) HPLC	Activity (Bq)	Specific activity $(Bq/\mu mol)$	amount (μg)	rate (%)
Normal plants (N)	190	2.67×10^{4}	6.79×10^{4}	297	3.6
Dwarf-1 mutants (d1)	1300	2.56×10^{4}	9.35×10^3	1227	25.9

Table 3. Quantification of GA_{20} -13-O-glucoside (9) formed from GA_{20} in normal plants (N) and dwarf-1 mutants (d1) of Zea mays L .

glucosyl conjugates . A series of synthetic gibberellin glucosides including GA_{20} -13-O-glucoside (9) was permethylated. Preparative TLC proved to be useful for purifying the crude product. The GC on SP-2100 and QF-1 resulted in distinct peaks for all permethylated glucosides, the retention times of which are summarized in Table 1 .

The permethylated standard compounds were then subjected to $GC-M^S$ The resulting MS spectra were compared in order to select diagnostic fragments for identification. The most prominent ions originate from the permethylated sugar moiety (m/z 75, 101, 155, 187, 219) (Kochetkov et al. 1963, 1965). One of the most characteristic ions for all permethylated gibberellin glucosides indicates the radical loss of a permethylglucosyloxy group (M-235⁺; Table 2) In the case of the ring A-glucosylated gibberellins 1, 3, 5, 7, an additional 10^{55} of $CO₂$ leads to the ion at M-219⁺ which is not present in the spectra of 13-0⁻ glucosylated gibberellins $(2, 4, 6, 8, 9)$. For the latter glucosides the ion at $M-267^+$ is characteristic, which is formed by the loss of MeOH from the M-235⁺ ion. These differences may be of value for the differentiation of the investigated ring A 3-O-glucosides and 13-O-glucosides .

Metabolic Formation of GA_{20} *-13-O-Glucoside* (9)

Excised shoots of 7-day-old N and d1 Zea mays seedlings were incubated with $GA₂₀$. After 48 h the shoots were extracted with methanol. The pooled extracts were spiked with $[3H]GA_{20}$ -13-O-glucoside and subsequently purified by DEAE-Sephadex chromatography, silica chromatography, and preparative reverse-phase HPLC. The identity of the isolated GA_{20} -13-O-glucoside (9) was established by the HPLC retention time ($t_R = 5.1$ min), which was shown to be the same as that of authentic GA_{20} -13-O-glucoside (9).

The GA_{20} -13-O-glucoside fractions from both feeds were permethylated and examined by GC-MS. The mass spectra obtained at the retention time of a^{u-} thentic permethylated GA_{20} -13-O-glucoside (9) were found to be identical with that of the authentic compound. Both contained diagnostic ions (m/z 389, 329, 297), and their abundances coincided with those of the standard substance (Table 2) .

In the literature there are reports dealing with GA_{20} metabolism in Zea may^s where polar fractions formed in cobs and apical meristem of hybrids were as-

sumed to be GA glucoside-like (Rood et al. 1983a,b). Our data demonstrate that GA_{20} -13-O-glucoside (9) is metabolically formed in Zea mays. This is true for both the N and the d1 mutant. This also indicates that Zea mays, like Vicia faba (Lattke and Schneider 1985), possesses enzymes for GA-13-O-glucosylation.

As far as the amount of glucosides is concerned, we found striking differences between the N and d1 feed. In d1 seedlings up to six times more G_{20} -13-O-glucoside was formed than in normal plants (facte 3). The total glu-
cosylation rate of 26% in d1 seedlings has to be considered exceptionally high. GA_{20} -13-O-glucoside was formed than in normal plants (Table 3). The total glu-

References

- Baram GI, Gradiev MA, Komarova NI, Pordroyzen MP, Bolvanov JA, Kuzmin SV, Kargaltsen YU, Kuper EA (1983) Micro-column liquid chromatography with mufti-wavelength photometric detection. I. The OB 4 micro-column liquid chromatograph. J Chromatogr. 264:69-90
- Beale MH, Gaskin P, Kirkwood P, MacMillan J (1980) Partial synthesis of gibberellin A₉ and $[3\alpha]$ and 3 β^2 H₁]gibberellin A₉, gibberellin A₅ and [1 β , 3-²H₂ and -³H₂]gibberellin A₅, and gibberellin A_{20} and [1 β , 3 α -2 H_2 and -³H₂]gibberellin A_{20} . J Chem Soc Perkin 1 1980:885-891
- Grabner R, Schneider G, Sembdner G (1976) Fraktionierung von Gibberellinen, Gibberellinkonjugaten and anderen Phytohormonen durch DEAF-Sephadex-Chromatographic . J Chromatogr 121 :110-115
- Heupel R, Phinney BO, Spray C, Gaskin P, MacMillan J, Hedden P, Graebe JE (1985) Native gibberellins and the metabolism of $[$ ¹⁴C] gibberellin A₅₃ and of [17-¹³C, 17-³H₂]gibberellin A₂₀ in tassels of Zea mays. Phytochemistry 24:47-53
- Kochetkov NK, Chizhov OS (1965) Mass spectrometry of methylated methyl glycosides : Principles and analytical application . Tetrahedron 21 :2029-2049
- Kochetkov NK, Wulfson NS, Chizhov OS, Zolotarev BM (1963) Mass spectrometry of carbohydrate derivatives. Tetrahedron 19:2209-2224
- Lattke P, Schneider G (1985) Formation of GA_{20} glucosyl conjugates in seedlings of Vicia faba. J Plant Growth Regul 4:71-79
- Phinney BO (1984) Gibberellin A_1 , dwarfism, and the control of shoot elongation in higher plants. In: Crozier A, Hillmann JR (eds) The biosynthesis and metabolism of plant hormones. Society for Experimental Biology, Seminar Series 23, Cambridge University Press, Cambridge, U .K ., pp 17-41
- Rivier L, Gaskin P, Albone KS, MacMillan J (1981) GC-MS identification of endogenous gibberellins and gibberellin conjugates as their permethylated derivatives. Phytochemistry 20:687-692
- Rood SB, Blake TJ, Pharis RP (1983a) Gibberellins and heterosis in maize. II. Response to gibberellic acid and metabolism of $[3H]$ gibberellin A₂₀. Plant Physiol 71:645-651
- Rood SB, Pharis RP, Koshioka M (1983b) Reversible conjugation of gibberellins in situ in maize. Plant Physiol 73 :340-346
- Schneider G (1981) Synthese von Gibberellinglucosiden . Dissertation B AdW der DDR, Berlin

Schneider G, Sembdner G, Phinney BO (1984) Synthesis of GA_{20} glucosyl derivatives and the biological activity of some gibberellin conjugates. J Plant Growth Regul 3:207-215